<<12345>>
6.

Let a,b and c be three non-zero vectors such that no two of them are collinear and  (a xb)xc =   $\frac{1}{3}|b||c|a.$   . If θ is the angle between vectors b and c, then a value of   $\sin\theta$  is


A) $\frac{2\sqrt{2}}{3}$

B) $\frac{-\sqrt{2}}{3}$

C) $\frac{{2}}{3}$

D) $\frac{2\sqrt{3}}{3}$



7.

The equation of the plane containing the line 2x-5y+z=3, x+y+4z=5  and parallel  to the plane x+3y+6z=1 is


A) 2x+6y+12z=13

B) x+3y+6z=-7

C) x+3y+6z=7

D) 2x+6y+12z=-13



8.

The distance of the point  (1,0,2)  from the point of intersection of the line  $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$   and the plane x-y+z=16 is


A) $2\sqrt{14}$

B) 8

C) $3\sqrt{21}$

D) 13



9.

 Let O be the vertex and Q be any point on the parabola   $x^{2}=8y$. If the point P divides the line segment OQ internally in the ratio 1:3, then the locus of P is


A) $x^{2}=y$

B) $y^{2}=x$

C) $y^{2}=2x$

D) $x^{2}=2y$



10.

The area (in sq units)  of the quadrilateral formed by the tangent at the endpoints of the latus rectum to  the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{5}=1$   is 


A) $\frac{27}{4}$

B) 18

C) $\frac{27}{2}$

D) 27



<<12345>>